UCSD

Machine Learning in Ophthalmic Diagnostics

Linda M. Zangwill, Ph.D. Professor of Ophthalmology

Hamilton Glaucoma Center Director: Glaucoma Clinic Research Director: Diagnostic Imaging Laboratories

Department of Ophthalmology University of California, San Diego

Financial Disclosures

National Eye Institute Research Support:

- EYR0111008, R01EY027510, EYR01019869, P30EY022589

Research Instrument Support:

- Heidelberg Engineering
- Carl Zeiss Meditec
- Optovue
- Nidek
- Topcon

Reading Center Services:

- Nidek
- Topcon
- Quark

Outline

- What is artificial intelligence / machine learning /deep learning?
- Types of machine learning tasks
 - Supervised learning
 - Unsupervised learning
- Deep learning
- Applications in ophthalmic diagnostics

What is artificial intelligence (AI), machine learning and deep learning?

WHY DEEP LEARNING IS SUDDENLY CHANGING YOUR LIFE

Fortune Magazine: September 28, 2016 by Roger Parloff

A GLOSSARY OF ARTIFICIAL-INTELLIGENCE TERMS

ARTIFICIAL INTELLIGENCE

AI is the broadest term, applying to any technique that enables computers to mimic human intelligence, using logic, if-then rules, decision trees, and machine learning (including deep learning).

MACHINE LEARNING

The subset of AI that includes abstruse statistical techniques that enable machines to improve at tasks with experience. The category includes deep learning.

DEEP LEARNING

The subset of machine learning composed of algorithms that permit software to train itself to perform tasks, like speech and image recognition, by exposing multilayered neural networks to vast amounts of data.

Machine Learning Applications: 3 categories of Software as a Medical Device (From: FDA draft guidance Aug 2016)

Machine Learning in Ophthalmic Diagnostics 1990-2017

Early Applications in Ophthalmology early 1990s and 2000s

Supervised

- To detect glaucomatous visual field damage
- To detect retinal disease and retinal lesions

1990s:

Detection of glaucomatous visual field damage

Interpretation of Automated Perimetry for Glaucoma by Neural Network

Michael H. Goldbaum,* Pamela A. Sample,* Halbert White,§ Brad Côté,* Paul Raphaelian,* Robert D. Fechtner,‡ and Robert N. Weinreb*

IOVS 1994;35:3362-3373

Purpose. Neural networks were trained to interpret the visual fields from an automated perimeter. The authors evaluated the reliability of the trained neural networks to discriminate between normal eyes and eyes with glaucoma.

Methods. Inclusion criteria for glaucomatous and normal eyes were the intraocular pressure and the appearance of the optic nerve; previous visual fields were not used. The authors compared the backpropagation learning method used by automated neural networks to those used by two specialists in glaucoma to classify the central 24^e automated perimetric visual fields from 60 normal and 60 glaucomatous eyes.

Results. The glaucoma experts and a trained two-layered network were each correct at approximately 67%. The average sensitivity of this test was 59% for the two glaucoma specialists and 65% for the two-layered network. The corresponding specificities were 74% and 71% for the specialists and the two-layered network, respectively. The experts and the network were in agreement about 74% of the time, which indicated no significant disagreement between the methods of testing. Feature analysis with a one-layered network determined the most important visual field positions.

Conclusions. The authors conclude that a neural network can be taught to be as proficient as a trained reader in interpreting visual fields for glaucoma. Invest Ophthalmol Vis Sci.

Presented at ARVO 1990

1990s: Detection of glaucomatous visual field damage Interpretation of Automated Perimetry for Glaucoma by Neural Network Michael H. Goldbaum,* Pamela A. Sample,* Halbert White,§ Brad Côté,* Paul Raphaelian,* Robert D. Fechtner,‡ and Robert N. Weinreb* IOVS 1994;35:3362-3373 Purpose. Neural networks were trained to interpret the visual fields from an automated plerimeter. The authors evaluated the reliability of the trained neural networks to discriminate between normal eyes and eyes with glaucoma. Methods. Inclusion criteria for glaucomatous and normal eyes were the intraocular pressure and the appearance of the optic nerve; previous visual fields were not used. The authors compared the backpropagation learning method used by automated neural networks to those used by two specialists in glaucomato classify the central 24° automated perimetric visual fields from 60 normal and 60 glaucomatous eves. Conclusions: "...A neural network can be taught to be as proficient as a trained reader in interpreting visual fields for glaucoma." specialists and the two-layered network, respectively. The experts and the network were in agreement about 74% of the time, which indicated no significant disagreement between the methods of testing. Feature analysis with a one-layered network determined the most important visual field positions. Conclusions. The authors conclude that a neural network can be taught to be as proficient as a trained reader in interpreting visual fields for glaucoma. Invest Ophthalmol Vis Sci. Presented at ARVO 1990

1990s and 2000s (selected examples): Detection of retinal lesions and diabetic retinopathy

Detection of Blood Vessels in Retinal Images Using Two-Dimensional Matched Filters SUBLISES CHAUDINER, FYROLY MEMBER, IEE, CHATEELEE, MEMBER, HEE, MORANN KATZ, MARK NELSON, SUBMICHAEL GOLDANDM IEEE Trans Med Imaging 1989;8:263-9	Automatic Detection of Red Lesions in Digital Color Fundus Photographs Meinder Niemeijer*, Ilrun va Ginneker, Merker, IEEE, Iees Stad. Mender, IEEE Michael D. Advinnet, Hender, IEEE IEEE Trans Med Imaaina 2005;24:5584-592
Automatic detection of diabetic retinopathy using an artificial neural network: a screening tool. GG Gardner, D Keating, TH Williamson and A T Elliott Br J Ophthalmol 1996; 80 937-938	Automated Detection and Differentiation of Drusen, Exudates, and Cotton-Wool Spots in Digital Color Fundus Photographs for Diabetic Retinopathy Diagnosis Mender Nemedin ^{1,33} summer and an and a statistical statistical and the statistical statist
ALTOMATED DIAGNOSIS AND IMAGE UNDERSTANDING WITH OBJECT EXTRACTION, OBJECT CLASSIFICATION, AND INTERENCING IN RETINAL DIAGES Michael Goldhaum, Saitel Moezzi, Adem Taylor, Shanhar Chatterjee, Jeff Boyd, Edward Humer, and Ramesh Jain Proceedings: IEEE Intl Cong of Image Processing: 1996;695-598 Automated detection of microaneurysms in digital red-	IOVS 2007;48: 2260 -2267 Automated grading for diabetic retinopathy: a large-scale audit using arbitration by clinical experts Alan D Fleming, ¹ Keith A Goatman, ¹ Sam Philip, ² Gordon J Prescott, ³ Peter F Sharp, John A Olson ²
free photographs: a diabetic retinopathy screening tool J. H. Hipwell*, F. Strachant, J. A. Olson‡, K. C. McHardyt, P. F. Sharp* and J. V. Forrester§	Br J Ophthalmol 2010;94:1606e1610 Retinopathy Online Challenge: Automatic
Screening for diabetic retinopathy using computer based image analysis and statistical classification Bernhard M. Ege ** , Ole K. Hejlesen *, Ole V. Larsen *, Karina Møller *, Barry Jennings *, David Kerr *, David A. Cavan *	Detection of Microaneurysms in Digital Color Fundus Photographs Meiner Niemeiger, Bran vin Gineken, Menber (IEE, Michael J. Con, Smir Menber, IEEE, Storeth Minnain, Grossel Golles, Crait Sishner, America IEEE, Bol Zang, Roberto Hornen, Menber (IEEE, Mathies Lamard, Chisado Maramatsu, Xiangian Wu, Gay Caruguel, Menber (IEEE, Jane Von, Agunti Mayo, Oil L.) Yuji Hanaka, Belaric Cechener, Christian Kenz, Smira Moher, IEEE, Fabath Karny, Maria Garcia, Soulad Member, IEEE, Hittohi Fugia, Menber, IEEE, Fabath Karny, Maria Garcia, Soulad Member, IEEE, Hittohi Fugia, Menber, IEEE, and Michael D. Avlemant, Member, IEEE,
Comp Methods and Prog in Biomedicine 2000;62:165-175	IEEE Trans Med Imaging 2010;29:185-194

ompute	r-aided diag	nosis of d	iabetic retinop	athy: A review
uthu Ram 100 Min L	a Krishnan Mo .im ª, E.Y.K. Ng °,	okiah ^{a,*} , U. I Augustinus	Rajendra Acharya ^{a,t} Laude ^d	^o , Chua Kuang Chua ^a ,
mputers in	Biology and Medicir	ne 2013;43:2136	-2155	
Literature review: Automated diabetic retinopathy detection methods				
Authors	Features	Methods (Dataset size)	Salient feature	Performance measure
Two class classification Garner et al. [116] Osareh et al. [154]	Pixel intensity HEM, MA, hard ecodates and	NN (301) FCM (142)	Statistical threshold nuning Precisely detect's exadates	Sensitivity-88.40%, specificity-83.50% Accuracy-50.10%
Larsen et al. [156] Sinthanayothin et al.	cottonwool spots Bed lesions HEM, MA, and hard essadates	DR Visibility threshold (260) NN (767)	Adjustable visibility thresholding Real time screening	Sensitivity-96,70%, specificity-71.40% Sensitivity-80.21%, specificity-70.66%
[30] Hansen et al. [160] Usher et al. [31]	Red lesions HEM, MA, hard ecodates and	DR Visibility threshold (83) NN (1273)	With and without pupil dilation Detects maculopathy also	Semitivity-978, specificity-758 Semitivity-95.108, specificity-46.308
Abramoff et al. [27]	cottonwool spots Web-based questionnaire, visual acuity measurement	EyeCheck software (1676)	Telediagnosis system	Interrator agreement-0.93
Neubauer et al. [155] Jefinek et al. [159]	Retinal thickness MA	RTA (61) Walkato automated MA detector (543)	RTA used for telescreening of DR Color non-mydriatic images can be analyzed	Sensitivity-93% (PDR) Sensitivity-85%, specificity-90%
Kahai et al. [153] Philip et al. [19]	MA MA and HEM	statistical learning (143) Wilson score and kappa statistic	Less computational time (10 ns) Adaptable to local imaging methods and equipments	Sensitivity-300%, specificity-67% Accuracy-99.1%
Aptel et al. [152]	HEM, MA, hard ecodates and cotton wool spots	Kappa analysis (158)	Three-field strategy without pupil dilation	Degree of agreement-0.82 (single), 0.90 (three), 0.90 (mydriasis), 0.95 (non-mydriasis)
Suthammanas et al. [29] Agurto et al. [157] Abramoff et al. [161]	AM-PM leatures MA, HEM, exudates, and CWS	DR telescreening system (100) Distance metrics (376) k-NN classifier (16,770)	Can handle images from various hospitals Rapid retraining It can discard poor quality images	Accuracy-92.528 ROC-0.98 AUC-0.839
Dupas et al. [162] Quellec et al. [13] Reza and Eswaran [7]	MA, HEM, and exudates Optimal filter frame work Hard exudates, CWS, and large	k-NN classifier (761) k-NN (67) Rule based classifier (20)	k can able to detect ME Detects drusen and Stargardt's disease flecks also Accurate grading of NPDR lesions	Sensitivity-83.9%, specificity-72.7% AUX-0.927 Accuracy-97%
Kevin Noronha et al.	plaque of hard exudates Wavelet energy features	SVM (240)	DKRI	Accuracy-99.17%, sensitivity-99.17%, specificity-99.17%
Three class classification	HEM MA condutor and CMS	NN (430)	High seconds filling	Morris J. 17 670. No.s. Deviligentias Thabatic
are er ar (100)	riting are, encourse and CWS	con family	and the second	Retinopathy-82.60% Proliferative Diabetic Retinopathy- 88.30%
Nayak et al. [3] Mookiah et al. [80]	Exudates, area of bloodvessel, and contrast Blood vessels and exudates area, bifurcation points, global texture and entropies	NN (540) GA optimized PNN classifier (156)	Texture and morphological features PNN tuning by GA and Particle Swarm Optimization (PSO)	Semithvity-90% Specificity-100% Accuracy-93% Semithvity-96.27%, specificity-96.08%, accuracy-96.15%
Four class classification Yun et al. [164] Acharya et al. [165]	Perimeter of the blood vessels Co-occurrence matrix and run length matrix	NN (124) SVM (238)	Morphological features DRH	Semithvity-90%, specificity-100%, accuracy-84% Semithvity-98.9%, specificity-89.5%, accuracy-100%
Five class classification		0.04 (300)	Man Manual Roman	Samithin 53 KW considers 00 KW second 8W

Unsupervised algorithms can detect glaucomatous visual field patterns and progression <u>without</u> labeled data

Tremendous Progress in Last 3 Years

- Deep learning
- Availability of large datasets
- Computational power

Deep Learning with Convolutional Neural Networks

Competitions Have Spurred Progress Kaggle Competition 2015 to classify 5 levels of severity of diabetic retinopathy from photographs

•100,000 images of 50,000 patients generated by community clinic screening sites (EyePACs)

•Well-trained humans are compared to each other, ~80%

•661 contestants

•Deep learning winner: 0.85 kappa

Kaggle Diabetic Retinopathy Detection competition report Ben Graham, PhD Department of Statistics and Centre for Complexity Science University of Warwick, UK August 6, 2015

Deep Learning for Diabetic Retinopathy Detection from fundus photographs (AUC*: 0.94 to 0.99)

	Training Datasets	Validation Dataset: MESSIDOR 2 (France) (n= 1748 Images, 874 pts)
Retina		4110 0.00
Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning	(n=10,000 to 1,250,000) depending on the lesion	AUC = 0.98 (referable DR)
Michael David Abràmoff, ¹⁻³ Yiyue Lou, ⁴ Ali Erginay, ⁵ Warren Clarida, ³ Ryan Amelon, ³ James C. Folk, ^{1,3} and Meindert Niemeijer ³		
IOVS 2016;57:5200-5206		
AMA I Original Investigation I INNOVATIONS IN HEALTHCARE DELIVERY Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs Wron Editor, Hol. 16/ Prog. MC, Hol. Marc. Come, HO, Lawk ML, ES, Annadules Naryaessen, HO, Sahderbrunggelau, MC, Gaar Wicht, Marc. Jang, HO, Dank ML, ES, Annadules Naryaessen, HO, Sahderbrunggelau, MC, Gaar Wicht, Marc. Jang, HO, Dank ML, ES, Annadules Naryaessen, HO, Sahderbrunggelau, MC, Gaar Wicht, Marc. Jang, HO, Univ. Kalker, HO JAMA 2016;316:2402-2410	EyePACs U.S. & India (n=128,175) And transfer learning from Imagenet	AUC = 0.99 (referable DR)
Automated Identification of Diabetic Retinopathy Using Deep Learning	EyePACS (US) (n=75,137)	AUC = 0.94 (DR yes vs no)
Ophthalmology 2017: 124:962-969	*AUC = Area under receive	roperating characteristic curve

Deep Learning for Diabetic Retinopathy Detection Opening the Black Box?

 Automated Identification of Diabetic Retinopathy Using Deep Learning
 EyePACS (US) (n=75 137)

 Ruhab Gargou, ' Theodere Leng, MD, MS²
 Ophthalmology 2017: 124:962-969

Training Datasets

Validation Dataset: MESSIDOR 2 (France) (n= 1748 Images, 874 pts)

AUC = 0.94 (DR yes vs no)

Automated generated heat maps identifying

Deep Learning: Automated diagnosis and grading of pediatric cataracts n= 476 normal tissue,

Localization and diagnosis framework for n= 410 pediatric cataracts pediatric cataracts based on slit-lamp images 4-fold cross-validation using deep features of a convolutional neura ROC curves of classification ROC curves of area grading network sitive Rate Rate Xiyang Liu^{1,2e*}*, Jiewei Jiang^{1e}, Kai Zhang¹, Erping Long³, Jiangtao Cui¹, Mingmin Zhu Yingying An¹, Jia Zhang¹, Zhenzhen Liu³, Zhuoling Lin³, Xiaoyan Li³, Jingjing Chen³, Qianzhong Cao³, Jing Li³, Xiaohang Wu³, Dongni Wang³, Haotian Lin³* a 0.6 -CNN AUC=0.9686 CNN AUC-0 98923 Plos One 2017;12. Od 0.4 O 0.4 WAVE AUC=0.91613 WAVE AUC=0.87713 True -SIFT AUC=0.84915 -SIFT AUC=0.89031 0.2 0.2 -LBP AUC=0.91988 -LBP AUC=0.76124 -COTX AUC=0.75687 0.2 0.4 0.6 0.8 0.4 0.6 False Positive Rate 0.8 0.2 False Positive Rate (a) (b) ROC curves of density grading ROC curves of location grading Rate 80 Rate Positive Pos 9.0 e SVM CNN AUC=0.97433 CNN AUC=0.95911 Q 0.4 WAVE AUC=0 89234 WAVE AUC=0.86518 D True True -SIFT AUC=0.83333 -SIFT AUC=0.88138 -LBP AUC=0.75134 -LBP AUC=0.8251 -COTX AUC=0.89425 -COTX AUC=0.69798 0.4 0.6 0.8 False Positive Rate 0.4 0.6 False Positive Rate 0.8 (d)

2017 Ophthalmic Diagnostics: UK, India and Europe lewStatesman = techdorld OCT ALTHCARE 31 JANUARY 2017 AI on the NHS: how machine Moorfields Eye Hospital on track to have a intelligence could save the working deep learning algorithm for eyesight of thousands diagnosis by the end of the year Google Deepmind's artificial intelligence can spot the early signs of serious eye diseases GOOGLE'S AI EYE DOCTOR GETS READY TO GO TO WORK IN **Fundus Photos** INDIA Google Brain Al research group News room > News releases > **March 2017** IDx and IBM Watson Health Forge Alliance for Eve Health IBM Watson Health to Distribute IDx-DR Offering in European Economic Area Fully Automated Diagnostic Device Receives CE Certification; IDx LLC Planning for Rollout Across Europe IDx LLC, a company focused on deploying cutting-edge technology to make medical diagr announced earlier today that its first commercial product, IDx-DR, has received CE approv device. CE marking clears IDx-DR for sale in 31 countries that comprise the European Ec val as a Cla

Advantages and Limitations of AI

Advantages

- Objective
- Reproducible
- Increases access to expert
 assessment
- Sensitivity/Specificity can be modified to match requirements for implementation
- Once model has been "trained," can be inexpensively deployed

Limitations

- Large datasets needed for training/ development for deep learning
 - DR: optimum 60000, 17000 referable DR images (Gulshan)
- High-quality annotations/ labels needed
 - Weak labeling possible
- Black box
 - Some visualization already available
- Regulatory and other issues

VIEWPOINT Unintended Consequences of Machine Learning in Medicine

Cabitza F, Rasoini R, Gensini GF. JAMA 2017;318:517-518

- Reducing the Skills of Physicians (evidence from radiology)
- Focus on text (data) and the Demise of Context: <u>Training set matters!</u>
 - Example: Machine learning based decision support system determined that patients with pneumonia and asthma were at a lower risk of death than patients with pneumonia but without asthma
 - Training set: Patients with asthma who presented with pneumonia were usually admitted directly to intensive care units to prevent complications; this led to patients with pneumonia and asthma having better outcomes
- Intrinsic Uncertainty in Medicine
- The Need to Open the Machine Learning Black Box

JAMA 2016	AMA Organi Investigation INNOVATIONS INH Development and Validation for Detection of Diabetic R in Retinal Fundus Photogram	an of a Deep Learning Algorithm etinopathy phs	
Van o Rahken, Michael Lijk Program, Michael Nan, Conser, Michael Nathan, Michael Nathael, Michael Nathael, Michael Nathael Nathae		C. Stumpe, PHD; Daniel Wai, IES; Auracahalam Karayanaawang, PHD; Eng. Jongs Caudros, OD, PHD; Ramasamy Kim, OD, DNB; PH: Dale R, Waldmar, PHD	
EDITORIAL		ESTORIAL	
Translating Artificial Intelligence Into Clinical Care Ardwer, Buns, Mc hust, Schwer, Mc		Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening	
Unresolved Issues include (from Wong and Bressler):			

4. Requires a major mind-set shift in how clinicians and patients entrust clinical care to machines; both physicians and patients have to trust a "black box" to determine a disease state.

E.g.: Did machine assign referable diabetic retinopathy to eyes that had poorer pupil dilation and more severe cataract (because people with diabetic retinopathy are more likely to have these features) rather than based on the severity of the clinical diabetic retinopathy?

Future With Al/Deep Learning

- General algorithm for diagnosing retinal and other eye disease
- New scientific and clinical insights
- · Reinventing the eye exam
- Seamless integration with electronic medical records and instrument software
- Black box will be opened
- The eye as a window into the body

Computer Science > Computer Vision and Pattern Recognition		
Predicting Cardiovascular Risk Factors from Retinal Fundus Photographs using Deep Learning		
Ryan Poplin, Avinash V. Varadarajan, Katy Blumer, Yun Liu, Michael V. McConnell, Greg S. Corrado, Lily Peng, Dale R. Webster (Submitted on 31 Aug 2017 (v1), last revised 21 Sep 2017 (this version, v2))		
https://arxiv.org/pdf/1708.09843		

· Many constraints and unresolved issues

JAMA 2016	JAMA Orginal Investigation INNOVATIONS IN HEALTH CARE DELIVERY Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs Wave Editor, MC 18/PW, MC, Hol Mer Come, Hol Method, FMC Dank MI, BS, Knowlaim Responses, HC, Subdevin Waye, MC, MM, Hol Mer Come, Hol Method, Strage Landow, Of Non-Method, NG, NG, COME, Rey Name, MC, Dell, Hillip C, Malon, IE, Amazi, L. Mag, MC, Mint Landow, Ho	
EDITORIAL		EDITORIAL
Translating Artificial Intel Androw L. Buarn, HD: Isaac S. Kohama, MD, HD	ligence Into Clinical Care	Artificial Intelligence With Deep Learning Technology Looks Into Diabetic Retinopathy Screening
Challenges include (from Wong and Bressler):		

3. How does such software "fit" in a clinical system?

- a. Should the software be incorporated into retinal cameras and thus used at the point of care?
- b. Should clinician simply trust the results without viewing the image?
- c. Should centralized diabetic retinopathy reading centers be established in the United States and, more importantly, in lowresource settings where few ophthalmologists are available to care for all of the patients with diabetes?